Name:		
	EDUC 272 Final Exam	Spring 2008-2009
Geometry Weight: 30%		. 5
Exercise 1: A CB radio station C is lo	ocated 3 mi from the inter	rstate highway h. The station has a
range of 6.1 mi in all directions from	the station. If the interst	ate (connecting between two or
more states) is along a straight line	e, how many miles of h	nighway are in the range of this
station? Explain your answer. (4 pt	s)	
4	> /	1
	3 mi	
	č	
Exercise 2 : Consider the $\triangle ABC$ with	vertices having coordin	ates A(2, 2), B(5, 2) and C(2, 6).
What type of triangle is ΔABC? Expla	nin your answer. (4 pts)	
A 4 100 100 100 100 100 100 100 100 100 1		

Exercise 3: In \triangle ABC, line (DE) is parallel to line (AB), and line (DF) is parallel to line (AC). If $m(and m(, find the measure of the angles labeled 1, 2, 3, 4 and 5. (4pts)$				
	$ \begin{array}{c c} C \\ \hline 70^{\circ} \\ \hline A \\ F \end{array} $ $ \begin{array}{c c} A \\ \hline A \\ \hline B \end{array} $			
-				
	: These conjectures were made by students in a school. Determine whether you agree and write an argument to support your viewpoint. (2 ½ pts)			
a.	All triangles with the same area congruent.			
b.	Right triangles cannot be scalene.			
c.	Triangles with equal areas have equal perimeters			
d.	The area of any triangle is ½ the area of the rectangle with the same base and height			
- Add To				

•

Exercise 5: use slope to determine if there is a single line through the points with coordinates	(4,
2), (0, -1), and (7, -5). Explain your reasoning. (2 pts)	
Exercise 6: If the area of a rectangle remains constant but its perimeter has increased, how have	ıas
the shape of the rectangle changed? Explain. (2 pts)	
	_
Exercise 7: Given $\triangle ABC$ with parallel lines dividing segment AB into three congruent segments	ıts
as shown, how does the area of ΔBDE compare with area of DEFG? Explain. (2 pts)	
$a \stackrel{B}{\wedge}$	
C	
A = C	

Exercise 8: Given the following figure. Find x. Explain. (2 pts)

Exercise 9:

- a. Draw a traversable network that has more than four vertices. Indicate an appropriate path through it labeling the starting and stopping points.
- b. Is your network above an Euler Circuit? Explain why or why not.
- c. Using a fewest possible number of vertices and arcs, draw a network that is not traversable. (3 ½ pts)

Exercise 10: In triangle ABC, a square has been inscribed as shown. The lengths of the sides of
Δ ABC are 3, 4 and 5 as shown. Find the length of a side of the square. (2 pts)
$A \longrightarrow A$
Exercise 11: In the following figure, quadrilateral ABCD is a parallelogram and P is any point on [AC]. Prove that the area of Δ BCP is equal to the area of Δ DPC. (2 pts)